Showing posts with label limits and continuity. Show all posts
Showing posts with label limits and continuity. Show all posts

Sunday, May 24, 2009

Question on Limits and Convergence of Number Sequence

In Number theory tutorialoffered by TutorVista will help you to solve problem related to number sequences, calculating limits and continuity of the sequence.

Topic : Limits and convergence of given number sequence.

Decrease in the value of the numbers in the sequence is said to be sequence convergence.

Question : Write the first five terms of the sequence, determine whether the sequence converges, and if so find its limit.

(1 - \frac{1}{2}), (\frac{1}{2} - \frac{1}{3}), (\frac{1}{3} - \frac{1}{4}), (\frac{1}{4} - \frac{1}{5}), . . . . . .



Solution :


General term will be given as ,
(\frac{1}{n}-\frac{1}{n+1})<br />\\ a_ =  \frac{1}{1} - \frac{1}{1+1} = 1 - \frac{1}{2} = \frac{2-1}{2} = \frac{1}{2} = 0.5 \\ a_2 =  \frac{1}{2} - \frac{1}{3} =  \frac{3-2}{2*3} = \frac{1}{6} = 0.167 \\a_3=  \frac{1}{3} - \frac{1}{4} =  \frac{4-3}{3*4} = \frac{1}{12} = 0.083 \\ a_4 =  \frac{1}{4} - \frac{1}{5} =  \frac{5-4}{5*4} = \frac{1}{20} = 0.05 \\ a_5 = \frac{1}{5} - \frac{1}{6} =  \frac{6-5}{6*5} = \frac{1}{30} = 0.03


















So 0.5, 0.167, 0.083, 0.05, 0.03 Thus we can observe that the values goes on decreasing.
Hence the number sequence converges.

Nows lets find it's limit by ratio test

\mathop{\lim}\limits_{n \to \infty}(\frac{a_{n+1}}{a_n}) \\ = \mathop{\lim}\limits_{n \to \infty}(\frac{\frac{1}{n+1} -\frac{1}{n+1+1}}{\frac{1}{n} -\frac{1}{n+1}}) \\ = \mathop{\lim}\limits_{n \to \infty}(\frac{\frac{n+2-(n+1)}{(n+1)(n+2)}}{\frac{n+1-n}{n(n+1)}}) \\ \mathop{\lim}\limits_{n \to \infty} (\frac{n+2-n-1}{(n+1)(n+2)} \div \frac{n+1-n}{n(n+1)}) \\ \mathop{\lim}\limits_{n \to \infty}(\frac{1}{(n+1)(n+2)}X\frac{n(n+1)}{1}) \\ \mathop{\lim}\limits_{n \to \infty}(\frac{n}{n+2}) \\ = \frac{\infty}{\infty+2} \\ = \frac{\infty}{\infty} \\ = 1<br />

















For more help contact math help or calculus help.